PVA, IPS и другие: увлекательная история жидкого кристалла

PVA, IPS и другие: увлекательная история жидкого кристалла

30 августа 2015

Термин «жидкий кристалл» означает переходное состояние вещества между твёрдым и изотропным (с одинаковыми свойствами по всем направлениям) жидким. В этой фазе вещество сохраняет кристаллический порядок расположения молекул, но при этом обладает значительной текучестью в широком диапазоне температур.

Работа жидкокристаллических матриц основана на использовании явления поляризации. Вещества, способные пропускать свет только в одной плоскости, называют поляризаторами.

Через два поляризатора, плоскости поляризации которых расположены под углом 90° друг к другу, свет пройти не сможет. Но если расположить между поляризаторами вещество, которое сможет повернуть вектор поляризации света на нужный угол, возникает возможность управлять яркостью свечения от максимального пропускания (белый) до полного блокирования (чёрный). Именно так и работают ЖК-матрицы.

TN+film

pva-ips-1.jpg
Рис. 1. Матрица TN+Film

В 1973 г. была представлена первая и наиболее простая технология ЖК матриц TN (Twisted Nematic), скрученные нематические кристаллы.

Кристаллы в матрице представляют собой спираль. При отсутствии управляющего напряжения свет беспрепятственно проходит через поляризаторы и создаёт белый пиксель. При максимальном напряжении свет не проходит и получается чёрный пиксель. Для получения оттенков серого кристаллы занимают такое положение, при котором свет проходит через фильтры не полностью.

Для расширения углов обзора матрицы, при которых каждая ячейка отображается с правильным цветом, была разработана специальная плёнка, которую накладывают сверху на матрицу, откуда и произошло название технологии (Film – плёнка).

Ещё одна особенность TN состоит в том, что если управляющий транзистор пикселя сгорит, на экране появится яркая белая точка.

Поскольку добиться абсолютно точного позиционирования кристаллов невозможно, у TN-матриц чёрный цвет выглядит как серый.

Попытки модернизации TN с применением технологий STN (Super Twisted Nematic) и DSTN (Dual-Scan Twisted Nematic) от Sharp распространения не получили. В настоящее время единственным преимуществом технологии TN является малая стоимость, а недостатками – невысокое качество цветопередачи, сравнительно малые углы обзора и низкая контрастность.

pva-ips-2.jpg
Рис. 2. Матрица IPS

Чтобы преодолеть органические недостатки технологии TN, японская компания Hitachi разработала технологию IPS (In-Plane Switching). В матрице IFS кристаллы не скручены в спираль, а расположены параллельно друг другу вдоль плоскости экрана. Оба электрода находятся на нижней стеклянной подложке. При отсутствии управляющего напряжения свет через матрицу не проходит, поэтому матрицы IPS выдают полноценный чёрный цвет. Кроме того, у матриц этого типа увеличены углы обзора. Недостатками технологий семейства IPS (S-IPS – Super-IPS, DD-IPS – DualDomain-IPS) является меньшее быстродействие и большее энергопотребление, по сравнению с технологией TN. Кроме того, они выделяют больше тепла и стоят гораздо дороже.

Компания Fujitsu предложила свой способ повышения качества матриц, коммерческим названием которого стало MVA (Multi-Domain Vertical Alignment). Технология позиционировалась как компромиссное решение между быстродействием TN и качеством изображения S-IPS.

pva-ips-3.jpg
Рис. 3. Матрица MVA

В этих матрицах кристаллы располагаются параллельно друг к другу и под углом 90° ко второму фильтру. Таким образом, свет попадает во второй фильтр с осью поляризации, направленной под углом 90° к плоскости поляризации фильтра, и поглощается. В результате на экране получается чёрный цвет. Подавая напряжение на ячейку, мы поворачиваем кристаллы и получаем светящийся пиксель.

Недостатком первых матриц VA было то, что цвет резко изменялся при смене угла обзора по горизонтали, поэтому поляризационные фильтры были значительно усложнены, а на стеклянную подложку стали наноситься не плоские электроды, а своеобразные треугольники.

При отключённом токе кристаллы выстраиваются перпендикулярно подложке, так что, с какой бы стороны мы ни смотрели, цвет всегда будет чёрный. При включённом же токе, как всегда, кристаллы поворачиваются на нужный угол и поворачивают вектор поляризации света. Вот только угол этот – между плоскостью электрода и кристалла. Если мы смотрим под углом, мы всегда увидим только одну зону, кристаллы в которой расположены как раз в таком положении, чтобы не искажать цвет. Вторая зона видна не будет.

pva-ips-4.jpg
Рис. 4. Матрица VA

Подобное решение значительно усложняет как фильтры-поляризаторы, так и сами панели, потому что каждую точку на экране нужно дублировать для двух зон.

Как и в S-IPS, у MVA время отклика выше, чем у TN, но на сегодняшний день отличие уже некритично. Контрастность и яркость лучше, чем у S-IPS, до 1000:1. Цветопередача матриц MVA считается компромиссной между TN и S-IPS.

Компания Samsung не пожелала платить лицензионные отчисления Fujitsu и разработала свою технологию под названием PVA. Технологии эти очень похожи, единственным существенным отличием MVA является большая контрастность, поэтому матрицы часто называют MVA/PVA.

pva-ips-5.jpg

Эволюция жидкокристаллических матриц не остановилась. Следующим этапом в их развитии стала технология OLED, о которой мы расскажем в следующей статье.

Подпишитесь на рассылку
и получайте популярные статьи, видео и кейсы за неделю в одном письме